Inhibition of ice nucleation by slippery liquid-infused porous surfaces (SLIPS).
نویسندگان
چکیده
Ice repellent coatings have been studied and keenly sought after for many years, where any advances in the durability of such coatings will result in huge energy savings across many fields. Progress in creating anti-ice and anti-frost surfaces has been particularly rapid since the discovery and development of slippery, liquid infused porous surfaces (SLIPS). Here we use SLIPS-coated differential scanning calorimeter (DSC) pans to investigate the effects of the surface modification on the nucleation of supercooled water. This investigation is inherently different from previous studies which looked at the adhesion of ice to SLIPS surfaces, or the formation of ice under high humidity conditions. Given the stochastic nature of nucleation of ice from supercooled water, multiple runs on the same sample are needed to determine if a given surface coating has a real and statistically significant effect on the nucleation temperature. We have cycled supercooling to freezing and then thawing of deionized water in hydrophilic (untreated aluminum), hydrophobic, superhydrophobic, and SLIPS-treated DSC pans multiple times to determine the effects of surface treatment on the nucleation and subsequent growth of ice. We find that SLIPS coatings lower the nucleation temperature of supercooled water in contact with statistical significance and show no deterioration or change in the coating performance even after 150 freeze-thaw cycles.
منابع مشابه
Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance.
Ice-repellent coatings can have significant impact on global energy savings and improving safety in many infrastructures, transportation, and cooling systems. Recent efforts for developing ice-phobic surfaces have been mostly devoted to utilizing lotus-leaf-inspired superhydrophobic surfaces, yet these surfaces fail in high-humidity conditions due to water condensation and frost formation and e...
متن کاملFluorine-free, liquid-repellent surfaces made from ionic liquid-infused nanostructured silicon
ABSTRACT Liquid-repellent surfaces based on slippery liquid-infused porous substrates (SLIPS) were prepared from porous, nanostructured silicon surfaces with different surface functionalization, infused with the polar ionic liquid 1-ethyl-3-methylimidazolium methylsulfate ([C2mim]MeSO4). Contrary to nonpolar SLIPS based on perfluorinated substrates and infusion liquids, [C2mim]MeSO4 forms stabl...
متن کاملSelf-cleaning and antibiofouling enamel surface by slippery liquid-infused technique
We aimed to create a slippery liquid-infused enamel surface with antibiofouling property to prevent dental biofilm/plaque formation. First, a micro/nanoporous enamel surface was obtained by 37% phosphoric acid etching. The surface was then functionalized by hydrophobic low-surface energy heptadecafluoro-1,1,2,2-tetra- hydrodecyltrichlorosilane. Subsequent infusion of fluorocarbon lubricants (Fl...
متن کاملAn immobilized liquid interface prevents device associated bacterial infection in vivo.
Virtually all biomaterials are susceptible to biofilm formation and, as a consequence, device-associated infection. The concept of an immobilized liquid surface, termed slippery liquid-infused porous surfaces (SLIPS), represents a new framework for creating a stable, dynamic, omniphobic surface that displays ultralow adhesion and limits bacterial biofilm formation. A widely used biomaterial in ...
متن کاملScaling Up Nature: Large Area Flexible Biomimetic Surfaces.
The fabrication and advanced function of large area biomimetic superhydrophobic surfaces (SHS) and slippery lubricant-infused porous surfaces (SLIPS) are reported. The use of roll-to-roll nanoimprinting techniques enabled the continuous fabrication of SHS and SLIPS based on hierarchically wrinkled surfaces. Perfluoropolyether hybrid molds were used as flexible molds for roll-to-roll imprinting ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 15 2 شماره
صفحات -
تاریخ انتشار 2013